Differential Equations with Boundary Value Problems (Classic Version)
$133.32
Title | Range | Discount |
---|---|---|
Trade Discount | 5 + | 25% |
- Description
- Additional information
Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.
Combining traditional differential equation material with a modern qualitative and systems approach, this new edition continues to deliver flexibility of use and extensive problem sets. The 2nd Edition’s refreshed presentation includes extensive new visuals, as well as updated exercises throughout.
New and updated features of this title
- Updated material throughout: Improved exposition based on current classroom trends as well as the feedback of first edition users. Includes revised coverage of exact first order equations (Ch. 2), matrix algebra (Ch. 7), and systems (Ch. 8).
- Expanded coverage of phase plane portraits: Now covered in two sections, including a new section on the trace-determinant plane.
- Large number of new figures help students clearly visualize ideas described in the text. The most geometric text available.
- More application-based examples demonstrate to students the broad applications of differential equations.
- Clearly highlighted methods of solution makes solutions easier to identify throughout the text.
- Extensive new exercises throughout: Includes Chapters 11, 12, and 13 on power series methods, Fourier series, and partial differential equations.
- Appendix on complex numbers and matrices: Gathers information in a single location to make it more readily accessible.
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.
Combining traditional differential equation material with a modern qualitative and systems approach, this new edition continues to deliver flexibility of use and extensive problem sets. The 2nd Edition’s refreshed presentation includes extensive new visuals, as well as updated exercises throughout.
Hallmark features of this title
- Unique blend of traditional algebraic and modern qualitative geometric approaches tempers the classic pure math approach (algebraic) with the practical, applied aspects of modern DE uses.
- Strong systems approach features a full chapter on matrix algebra, followed by three systems chapters. Practical uses of DEs today are not single equations but rather looking at several DEs using a computer.
- Novel modeling approach emphasizes problems and approaches.
- Flexible use of technology focuses on solving and interpreting through the inclusion of several optional technology projects. The text is platform-neutral.
Chapter 1: Introduction to Differential Equations
Differential Equation Models. The Derivative. Integration.
Chapter 2: First-Order Equations
Differential Equations and Solutions. Solutions to Separable Equations. Models of Motion. Linear Equations.
Mixing Problems. Exact Differential Equations. Existence and Uniqueness of Solutions. Dependence of Solutions on Initial Conditions. Autonomous Equations and Stability.
Project 2.10 The Daredevil Skydiver.
Chapter 3: Modeling and Applications
Modeling Population Growth. Models and the Real World. Personal Finance. Electrical Circuits. Project 3.5 The Spruce Budworm. Project 3.6 Social Security, Now or Later.
Chapter 4: Second-Order Equations
Definitions and Examples. Second-Order Equations and Systems. Linear, Homogeneous Equations with Constant Coefficients. Harmonic Motion. Inhomogeneous Equations; the Method of Undetermined Coefficients. Variation of Parameters. Forced Harmonic Motion. Project 4.8 Nonlinear Oscillators.
Chapter 5: The Laplace Transform
The Definition of the Laplace Transform. Basic Properties of the Laplace Transform 241. The Inverse Laplace Transform
Using the Laplace Transform to Solve Differential Equations. Discontinuous Forcing Terms. The Delta Function. Convolutions. Summary. Project 5.9 Forced Harmonic Oscillators.
Chapter 6: Numerical Methods
Euler’s Method. Runge-Kutta Methods. Numerical Error Comparisons. Practical Use of Solvers. A Cautionary Tale.
Project 6.6 Numerical Error Comparison.
Chapter 7: Matrix Algebra
Vectors and Matrices. Systems of Linear Equations with Two or Three Variables. Solving Systems of Equations. Homogeneous and Inhomogeneous Systems. Bases of a subspace. Square Matrices. Determinants.
Chapter 8: An Introduction to Systems
Definitions and Examples. Geometric Interpretation of Solutions. Qualitative Analysis. Linear Systems. Properties of Linear Systems. Project 8.6 Long-Term Behavior of Solutions.
Chapter 9: Linear Systems with Constant Coefficients
Overview of the Technique. Planar Systems. Phase Plane Portraits. The Trace-Determinant Plane. Higher Dimensional Systems. The Exponential of a Matrix. Qualitative Analysis of Linear Systems. Higher-Order Linear Equations. Inhomogeneous Linear Systems. Project 9.10 Phase Plane Portraits. Project 9.11 Oscillations of Linear Molecules.
Chapter 10: Nonlinear Systems
The Linearization of a Nonlinear System. Long-Term Behavior of Solutions. Invariant Sets and the Use of Nullclines. Long-Term Behavior of Solutions to Planar Systems. Conserved Quantities. Nonlinear Mechanics. The Method of Lyapunov. Predator—Prey Systems. Project 10.9 Human Immune Response to Infectious Disease. Project 10.10 Analysis of Competing Species.
Chapter 11: Series Solutions to Differential Equations
Review of Power Series. Series Solutions Near Ordinary Points. Legendre’s Equation. Types of Singular Points–Euler’s Equation. Series Solutions Near Regular Singular Points. Series Solutions Near Regular Singular Points – the General Case. Bessel’s Equation and Bessel Functions
Chapter 12: Fourier Series
Computation of Fourier Series. Convergence of Fourier Series. Fourier Cosine and Sine Series. The Complex Form of a Fourier Series. The Discrete Fourier Transform and the FFT.
Chapter 13: Partial Differential Equations
Derivation of the Heat Equation. Separation of Variables for the Heat Equation. The Wave Equation. Laplace’s Equation. Laplace’s Equation on a Disk. Sturm Liouville Problems. Orthogonality and Generalized Fourier Series. Temperature in a Ball–Legendre Polynomials. Time Dependent PDEs in Higher Dimension. Domains with Circular Symmetry–Bessel Functions.
Appendix: Complex Numbers and Matrices
Answers to Odd-Numbered Problems
Index
Additional information
Dimensions | 1.20 × 8.00 × 9.90 in |
---|---|
Series | |
Imprint | |
Format | |
ISBN-13 | |
ISBN-10 | |
Author | |
Subjects | mathematics, higher education, Calculus, Applied & Advanced Math, Advanced Math, Differential Equations |